Neil Marsh, Ph.D.

Professor, Chemistry
Professor, Biological Chemistry

4537 Chemistry
930 N. University Avenue
Ann Arbor, MI 48109-1055
 

(734) 763-6096

Areas of Interest

Our laboratory is interested in enzymology and protein design. Our research is inherently inter-disciplinary in nature and draws on a synergistic combination of bio-organic, bio-inorganic and bio-physical chemistry. We are fortunate to enjoy various productive collaborations with other research groups at Michigan.

Our interest in protein design led us to explore the properties of novel "Teflon-like" proteins that incorporate highly fluorinated amino acids within their hydrophobic cores. We have designed a series of model proteins that contain the fluorinated amino acid hexafluoroleucine to examine how fluorination can be used to modulate the physical and biological properties of proteins. We found that fluorinated proteins exhibit remarkable stability that allows them to resist unfolding by heat and organic solvents and degradation by proteases. We are applying these design principles to the development of fluorinated antimicrobial peptides, short peptides that kill bacteria by selectively disrupting their membranes. We aim to design fluorous antimicrobial peptides that will have enhanced selectivity for bacterial membranes and better resist degradation by proteases. We are also developing methods to follow the fate of peptides in vivo using fluorine NMR as a probe.

We are currently studying three enzymes that catalyze unusual and chemically difficult reactions that involve metal cofactors and/or reactive free radical intermediates. Benzylsuccinate synthase is a free radical-containing enzyme that catalyzes the first step in the metabolism of toluene - anaerobic bacteria that contain this enzyme can live on toluene as their sole carbon source! Glutamate mutase catalyzes an unusual carbon skeleton rearrangement involved in glutamate fermentation; it uses coenzyme B12, a cobalt-containing organo-metallic complex, to generate reactive free radicals that initiate the reaction mechanism. Lastly, we have begun to study aldehyde decarbonylase, an enzyme that catalyzes the conversion of long-chain aldehydes to alkanes and carbon monoxide, which is involved in hydrocarbon biosynthesis in plants and algae.

Increasingly, our attention is focused on enzymes involved in hydrocarbon metabolism as these may prove useful for the synthesis of new biofuels and bioremediation of hydrocarbon-contaminated soils. Our primary goal is to understand how these enzymes generate and control chemically reactive intermediates to catalyze their reactions; we then aim to apply what we learn to engineer new pathways for hydrocarbon metabolism.

Honors & Awards

Distinguished Faculty Governance Award, University of Michigan, 2022
Doctor of Science, University of Cambridge, 2007
Fellow, Royal Society of Chemistry, U.K., 2005
Co-Chair, Bioorganic Chemistry Gordon Research Conference, 2005
G.W. Raiziss Distinguished Visiting Fellow, University of Pennsylvania, 2001
Research Fellow, Darwin College, University of Cambridge, 1992
Royal Society University Research Fellowship, 1990

Published Articles or Reviews

Recent Publications

Negative Cooperativity in the Mechanism of Prenylated-Flavin-Dependent Ferulic Acid Decarboxylase: A Proposal for a "Two-Stroke" Decarboxylation Cycle.
Kaneshiro AK, Datar PM, Marsh ENG.
Biochemistry. 2023; 62: 53–61.

Purification of the full-length, membrane-associated form of the antiviral enzyme viperin utilizing nanodiscs.
Patel AM, Koebke KJ, Grunkemeyer TJ, Riordan CM, Kim Y, Bailey RC, Marsh ENG.
Sci Rep. 2022; 12: 11909.

Using kinetic isotope effects to probe the mechanism of adenosylcobalamin-dependent enzymes.
Marsh ENG.
Methods Enzymol. 2022; 669: 151–72.

The antiviral enzyme viperin inhibits cholesterol biosynthesis.
Grunkemeyer TJ, Ghosh S, Patel AM, Sajja K, Windak J, Basrur V, Kim Y, Nesvizhskii AI, Kennedy RT, Marsh ENG.
J Biol Chem. 2021; 297: 100824.

The Antiviral Enzyme, Viperin, Activates Protein Ubiquitination by the E3 Ubiquitin Ligase, TRAF6.
Patel AM, Marsh ENG.
J Am Chem Soc. 2021; 143: 4910–14.

Kinetic Analysis of Transient Intermediates in the Mechanism of Prenyl-Flavin-Dependent Ferulic Acid Decarboxylase.
Kaneshiro AK, Koebke KJ, Zhao C, Ferguson KL, Ballou DP, Palfey BA, Ruotolo BT, Marsh ENG.
Biochemistry. 2021; 60: 125–34.

For a list of publications from PubMed, click HERE

Web Sites